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A jumping process, defined in terms of the Lévi distributed jumping size and the Poissonian, position-
dependent waiting time with the algebraic jumping rate, is discussed on the assumption that parameters of both
distributions are themselves random variables which are determined from given probability distributions. The
fractional equation for the distributed Lévy order parameter � is derived and solved. The solution is of the form
of a combination of the Fox functions and simple scaling is lacking. The problem of accelerated diffusion is
also discussed. The case of the distributed waiting time parameter � is similarly solved and the solution offers
a possibility to manage processes which are characterized by more general forms of the jumping rate, not only
algebraic. Moreover, we mention a possibility that the parameters � and � are mutually dependent.
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I. INTRODUCTION

The continuous-time random walk �CTRW� �1,2� is a use-
ful formalism to deal with the anomalous transport. It in-
volves two quantities: a jump-length probability distribution
��x� and a waiting-time distribution w�t� which refers to the
time lapse between jumps. The Poissonian form of w�t�
means that the process is Markovian and it corresponds to
the Brownian motion. If w�t� has long tails and divergent
moments, i.e., when trajectories are subjected to long rests,
the motion appears subdiffusive �3�. As regards the jump-
size distribution ��x�, the stable forms are of particular inter-
est. The stability is understood here in a sense of the central
limit theorem: in the framework of the renormalization group
method one can demonstrate that the stable distribution is
reached after many steps of the convolution �4�. Often it is
not sufficient to assume the standard Gaussian and the gen-
eral Lévy distribution should be considered. In the latter case
the trajectories exhibit Lévy flights with divergent moments
and then the diffusion is accelerated. One can expect the
presence of long jumps in systems of high complexity which
are characterized by long-range correlations and nonlocal in-
teractions. It is the case in biological systems where the pres-
ence of the Lévy statistics is attributed to fractals �5�. One
can encounter long jumps in many social and environmental
problems which are related to people mobility �6�, e.g., to the
spreading of infectious diseases �7,8�. In all those problems
the medium has the nontrivial structure and then its nonuni-
formity should be included in the models. Since the tails of
the Lévy distribution are powerlaw, ��x�−1−��0���2�, the
infinite jumps are probable which generally can contradict

physical requirements. Then one needs to introduce a cutoff
to take into account a finite size of the system. An additional
modification is necessary if the trajectory refers to a motion
of a massive particle in the configurational space �Lévy
walks�. However if the time is sufficiently long, trajectories
of the Lévy walks resemble Lévy flights where each jump
length is distributed in the Lévy stable fashion �9�.

The Lévy walk model introduces a coupling between the
distributions ��x� and w�t�. We get another form the coupled
CTRW by assuming w�t� in the Poissonian form with the
x-dependent jumping frequency ��x�, w�t�=��x�exp�−��x�t�
�10�. For ��x�= �x�−�, where ��−1, one can observe the
anomalous diffusion �11� though the Markovian property
holds in this case. The above form of ��x� takes into account
that the temporal properties of the process can change with
the position and, in particular, it is well suited to handle the
transport in fractals �12–14�. Moreover, the power-law form
of the diffusion coefficient has been used to describe, e.g.,
the transport of fast electrons in a hot plasma �15� and the
turbulent two-particle diffusion �16�. In the following, we
assume that the jumping-size distribution ��x� has the Lévy
shape. In the diffusion limit of small wave numbers, the mas-
ter equation for the process which is characterized by the
x-dependent jumping rate and the Lévy distributed jumping
size, takes the form of the following fractional equation:

�p�x,t�
�t

= K������x�p�x,t��
��x��

, �1�

where 1���2. The solution can be expressed in form of
the Fox function �17,18�
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where a� t−1/��+�� �11,19�. The second moment of the distri-
bution �2� diverges because its asymptotics falls slowly:
p�x , t���x�−�−1��x�→��, where the proportionality coeffi-
cient depends on �. The diffusion is then accelerated for any
�. In order to quantify the diffusion rate, one can evaluate
moments of the order 	 for 	��. Note that the asymptotic
shape of p�x , t� is determined solely by the parameter � be-
cause of its power law form. The parameter �, in turn, influ-
ences the slope and then it enters the formula for the frac-
tional moments. One can classify the accelerated diffusion
process—in terms of the fractional diffusion coefficient—as
normal diffusion, subdiffusion, or superdiffusion, if � is zero,
positive, or negative, respectively �11�.

The form of the distribution �2� indicates the self-
similarity in a sense that p�x , t� at an arbitrary time t can be
expressed by scaling of the x variable

x�t� = t1/��+��x�1� � tHx�1� , �3�

where H is the Hurst exponent �20�. This form of scaling is
typical for fractals and can be encountered, accompanied by
the Lévy statistics, in many natural processes. A well-known
example from the field of biology is the heart rate spectrum
�5�. However, the scale may not be unique: the direct cou-
pling between fluctuations at different scales can take place
and only one value of the Hurst exponent is not sufficient to
characterize a system. Such system which involves the entire
spectrum of the fractal dimension is known as multifractal.
The lack of simple scaling in the multifractals requires a
generalization of Eq. �1� by admitting a spectrum of the Lévy
index �.

Multifractal structures can be recognized in various sys-
tems. They include geophysical and atmospheric phenomena
�21,22�, as well as financial markets �see Ref. �23�, and ref-
erences therein�. Multifractality is of particular interest in
biology and medicine: it emerges in the DNA sequences �24�
and neuron spiking �25�. It has been established that both
heartbeat interval �26� and cerebral blood flow signals �27�
exhibit the multifractal structure. The spectrum of the fractal
index narrows for patients with so different diseases as mi-
graine and congestive heart failure, compared to healthy in-
dividuals.

The multiscaling is crucial for disorder systems at random
critical points �28�. Also the turbulence involves many scales
both in space and time and multiscale correlations are impor-
tant �29�. In the Lévy walk approach to the turbulence �30�—
which introduces an associating a time scale with jump
distances—the multiplicity of scales is explicitly taken into
account since it is formulated in terms of an integral equation
which contains a coupled memory kernel.

In the field of solid state physics, the fractional equations
formalism has been applied to microporous materials in or-
der to describe particle diffusion within very narrow chan-
nels �single-file systems� �31�. Though those results agree
with simulations and experiments for short times, the model
fails for longer times. The authors of Ref. �31� conclude that
the order parameter may be in fact time dependent and the
fractional diffusion equations of distributed order can be the
starting point for future developments of the single-file dif-
fusion theory. The problem of diffusion in the microporous

materials is physically important; the single-file diffusion is
encountered in such phenomena as: ion transport in biologi-
cal membranes �32�, colloids in polymer solution �33�, Mar-
kov chains in statistics �34�, microfluidic devices �35�, traffic
flow �36�, and molecules in zeolites �37�. Another field of
possible application of fractional equations of the distributed
order is the financial market. Distributions of financial data
usually possess fast falling power-law tails. One can describe
those processes in terms of the fractional equation with a
truncated jump-size distribution, which is a special case of
the equation with the distributed Lévy index �38�.

In respect to the random walk, the multiscaling can enter
the decoupled CTRW models in two ways: as the distributed
order Lévy parameter � and the distributed order of the frac-
tional time derivative in the fractional non-Markovian diffu-
sion equation �39–42�. In this paper we study fractional
equations which correspond to the Markovian process, char-
acterized by the x-dependent waiting time distribution.
Therefore the model parameters, either � or �, are random
variables. The former case is considered in Sec. II, where the
Lévy parameter � is assumed to be distributed according to a
given function. Section III is devoted to the problem of the
random jumping rate parameter � and a possible mutual de-
pendence between � and � is also mentioned.

II. FRACTIONAL EQUATION WITH THE DISTRIBUTED
LÉVY PARAMETER

We consider the random walk process defined by the wait-
ing time probability distribution w�t� and the jump-size dis-
tribution ��x ���. They are of the form

w�t� = ��x,��e−��x,��t, �4�

where ��x ,��= �x�−� ���−1�, and

��x��� = 
2/
�
0

�

exp�− K�k��cos�kx�dk , �5�

respectively. The latter expression corresponds to the sym-
metric Lévy distribution. In addition we assume that the
Lévy index � is a stochastic variable and it is governed by
the normalized distribution f���. The stationary transition
probability for infinitesimal time intervals �t consists of two
terms: the probability that no jump occurs during that time
and that exactly one jump occurs. It reads

ptr�x,�t�x�,0� = �1 − ��x�,���t�	�x� − x�

+ ��x�,���t���x − x����� , �6�

where x� is the value of the process just before the jump.
From the above conditional probability one can derive the
master equation by evaluating the time derivative of p�x , t�
from the definition and by taking into account all possible
values of x and � before the jump:
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�

�t
p�x,t� = lim

�t→0
�� � ptr�x,�t�x�,0�p�x�,t�f����dx�d��

− p�x,t����t . �7�

Finally, we obtain the master equation

�

�t
p�x,t� = − ��x,��p�x,t�

+� � ��x�,�����x − x����f���p�x�,t�dx�d� .

�8�

In the diffusion limit of small wave numbers, which is
equivalent to the Kramers-Moyal approximation, the Eq. �8�
can be reduced to the fractional equation. The Fourier trans-

form of jump-size distribution �̃�k�=exp�−K��k��� can then

be expanded �̃�k�=1−K��k��+¯ and the master equation in
the Fourier space takes the following form:

�p̃�k,t�
�t

= − �
1

2

K��k��F���x,��p�x,t��f���d� . �9�

The inversion of the transform yields the fractional equation

�p�x,t�
�t

= �
1

2

K������x,��p�x,t��
��x��

f���d� . �10�

In order to solve Eq. �10�, we approximate f��� by a step
function and then express the equation in the form of linear
combination of the fractional operators. This form of the
solution allows us to account also for processes which in-
volve a discrete spectrum of � values. The integration inter-
val �1� and �2� is divided into N subintervals of a constant
length ��=1 /N. Equation �10�, discretized in that way,
takes the form

�p�x,t�
�t

= �
i=1

N

fi
��i���x,��p�x,t��

��x��i
, �11�

where f i=K�i f��i� /N. We want to find a function which sat-
isfies Eq. �11� in the realm of its validity, i.e., for small �k�.
For a single order parameter f��i�=	��i−�� it is given by
the Fox function �2�. Similarly, we will try to solve Eq. �11�
by assuming the solution in the form of a combination of the
Fox functions with unknown coefficients a1 , . . . ,B2:

p�x,t� = N�
i=1

N

pi, �12�

where

pi = ai�t�H2,2
1,1��ai�t��x���a1,A1�,�a2,A2�

�b1,B1�,�b2,B2� � �13�

and N is the normalization constant. We insert the Fourier
transform of p�x , t� to the Fourier transformed Eq. �11�

ṗ̃�k,t� = − �
i

f i�k��iF���x,��p�x,t�� �14�

and expand both sides of the equation in fractional powers of
�k� by utilizing properties of the Fox functions. It is possible
to choose the coefficients in Eq. �13� in such a way that all
terms of the order different from 0 and �i vanish, providing
we neglect the higher terms. Only two expansion coefficient
are kept: h�i

on the left-hand side and h0
�i� on the right-hand

side. Due to the normalization, each component p̃i satisfies
p̃i�k , t�−1�−h�i

�k /ai��i and it can be expressed in a form
which is generic for the symmetric Lévy processes �43�

pi =
1

�i�i
H2,2

1,1�� �x�
�i
��1 − 1/�,1/��,�1/2,1/2�

�0,1�,�1/2,1/2�
� , �15�

where the functions �i�t��h�i
/ai

�i are yet to be determined.
Equation �14� takes the form

d

dt	�j

h�j
aj

−�j�k��j + const
 = − �
j

f j	�
i

ai
�h0

�i�
�k��j .

�16�

The expansion coefficients are given by �11�

h0
�i� = 2

�i + �

2 + �
,

h�i
= −

2



��i + ��2
�− �i�
��i + ��cos��i
/2�sin	�i + �

2 + �


 .

�17�

By comparing the terms which correspond to consecutive
powers of �k� and introducing an auxiliary variable �i=ai

−�i,
we can transform Eq. �16� to the following system of equa-
tions:

h�j

f j
�̇ j = �

i

h0
�i��i

−�/�i �j = 1, . . . ,N� . �18�

We assume the uniform initial conditions ai�0�=	�x� /N; they
correspond to the conditions �i�0�=0. Then we can express
all the functions �i in terms of the �1 by simple integration

�i =
h�1

f i

h�i
f1

�1. �19�

In order to evaluate �1�t�, one needs to disentangle the fol-
lowing expression:

t =
h�1

f1
�

0

�1

d���
i=1

N

h0
�i�	 h�1

f i

h�i
f1

�
−�/�i

. �20�

After the proper normalization, we obtain the formula for the
functions �i
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�i
�i = −




2
�
�1 + ��
	−

�

�i + �

sin	 �

2 + �


�−1

h�i
�i

�21�

and the Eqs. �12� and �15� yield the final solution.
As an example, let us consider the case of uniformly dis-

tributed order parameter �: f i=1 /N for �� �1.5,2� and f i
=0 elsewhere. The distribution p�x , t� is determined from Eq.
�12� and the Fox functions can be computed by a series ex-
pansion for both small and large values of �x�:

pi�x,t� =
1


�i�i
�
n=0

�

�1 + �2n + 1�/�i�

�2n + 1�!!
�− 1�n	 x

�i

2n

�22�

and

pi�x,t� =
1


�i�i
�
n=1

�

�1 + �in�

n!
sin�
�in/2�	 �x�

�i

−�in−1

,

�23�

respectively. The distribution for the intermediate values is
difficult to obtain since the series are poorly convergent. The
expansion �23� implies that for large �x� the tail approaches
the shape ��x�−�min−1, where �min stands for the smallest
value of � which is involved in the process. The presence of
the other � values shifts this asymptotics to larger �x�, com-
pared to the case of the unique �. On the other hand, one can
solve the master equation �8�—which describes the jumping
process exactly, without any approximation—by simulating
the random walk trajectories by means of the Monte Carlo
method. For that purpose, one needs to sample the trapping
time from the distribution w�t�, the order parameter from
f���, and the jump size from ��x ���—along each trajectory.
The Lévy distributed random numbers can be obtained by
using the following algorithm �44�. Let r1� �−
 /2,
 /2� and
r2� �0,�� are the random numbers which obey the uniform
and exponential distribution, respectively. Then the numbers
of the form

x =
sin��r1�

cos�r1�1/� �cos�r1 − �r1�/r2�1/�−1 �24�

possess the symmetric Lévy distribution, centered at 0.
The results are presented in Fig. 1 and compared with two

limiting distributions which have been calculated with the
single values of the order parameter �=1.5 �f���=	��
−1.5�� and �=2 �the Gaussian case�. The upper curve corre-
sponds to �=1.5; it lies higher because smaller values of �
mean longer, slower decaying tails. The distribution obtained
from Eq. �12� agrees with that from the simulations in the
limit of large �x� since the fractional equation and the master
equation are equivalent there. The curve which corresponds
to the distributed order case gradually approaches the shape
��x�−2.5, the same as for the case �=1.5.

The transport process for the Lévy flights cannot be re-
garded as the ordinary diffusion because the second moment
of the probability distribution is divergent. To describe the
relative transport speed, one can determine a mean charac-

teristic displacement ��x�	�1/	, defined as the moment of order
	��min, where �min is such that f���=0 for ���min. It can
be expressed by the Mellin transform from the Fox function
��s� and, in the limit N→�, reduced to the integral

��x�	� = 2�
0

�

x	p�x,t�dx � �
i

ai
−	��− 	 − 1�

� �
i

�i
	
�1 − 	/�i� � �

1

2

��
	 
�1 − 	/��d� ,

�25�

where �=1+ i��. Since, according to Eqs. �19� and �20�, all
�i�t� rise, �i�t� rise as well and ��x�	� is a monotonically in-
creasing function of time. Figure 2 demonstrates how that
function, calculated for 	=1, depends on the interval of �.
Generally, it behaves similar to t� for large �x�. For �
� �1.1,1.5� the slope is steep due to the presence of very
long jumps. The increase of the slope parameter is especially
striking when � turns to negative. In the case of the Gaussian
��x�, negative values of � correspond to the enhanced diffu-
sion �11�.

III. PROCESSES WITH THE DISTRIBUTED WAITING
TIME PARAMETER

Let us consider a class of jumping processes with fixed
order parameter � for which the jumping rate parameter � in
Eq. �4� is a random variable, defined by a probability distri-
bution g���. It satisfies the normalization condition
�−1

� g���d�=1. The process is then characterized by the jump-
size distribution ��x� and the waiting time distribution w�t ���
which determines the time interval between consecutive
jumps, conditioned by the parameter �. The master equation

FIG. 1. �Color online� The distribution p�x , t� at t=5 obtained
from trajectory simulations �dashed lines� for the following cases:
�=1.5 �upper curve�, � uniformly distributed within the interval
�1.5,2� �middle curve�, and �=2 �lower curve�. The distributions
resulting from Eq. �12� are presented by the solid lines. The param-
eter �=0.4.
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for the process can be derived similarly as for the case of the
random �, discussed in Sec. II. The equation reads

�

�t
p�x,t� = −� ��x,��g���p�x,t�d� +� � ��x�,�����x − x���

�g���p�x�,t�dx�d� �26�

and the corresponding fractional equation in the diffusion
limit is of the form

�p�x,t�
�t

= K�� �����x,��p�x,t��
��x��

g���d� . �27�

The method of solving of Eq. �27� is analogous to that for the
random �. The expressions for the solution and for the mean
displacement ��x�	�1/	 are similar—one needs only to substi-
tute �i→�, �→�i, and f i→gi. The asymptotic behavior of
p�x , t� can be easily determined. Taking into account the first
term in the series �23�, we conclude that the slope of the tails
depends only on �: p�x , t���x�−�−1��x�→��.

The distribution w�� ��� determines the waiting time inter-
val � and it depends on x via the jump frequency �. Let us
consider the case of the unique �. If ��0 one can substitute
�, in a crude approximation, by its mean value �̄�x�= ���w
=1 /�= �x��. The distribution of this variable w�̄��̄�x�� is given
by the relation w�̄d�̄=2p�x , t�dx, for any time. Knowing how
x is distributed for large �x�, we conclude that w�̄��̄�
� �̄−�/�−1��̄→�� is a power law and the index is determined
by the both parameters � and �. The resulting non-
Markovian process is similar to the standard, decoupled
CTRW which used to be described by the fractional equation
where the fractional derivative is taken over time and its
order equals the slope exponent in the distribution w��� �3�.
Therefore, the CTRW with the power-law waiting-time dis-
tribution can be regarded as an approximation to processes
which are in fact Markovian and possess the x-dependent
jumping frequency. In the other words, the non-Markovian
property of the decoupled CTRW together with the long tails
of w��� can mimic the x-dependence of the waiting time

distribution. Taking into account that the exponent in the
distribution w��� may not be unique means, in the framework
of the decoupled and non-Markovian CTRW, the distributed
order of the differentiation over time and it corresponds to
the nonunique Hurst exponent �39,41,42�. In the case of the
Gaussian process ��=2�, such fractional equation—both for
the unique and distributed order—describes subdiffusion.

The problem of jumping process with the distributed pa-
rameter � is closely related to that which involves the jump-
ing frequency � of the x depedence other than algebraic.
Indeed, we rewrite Eq. �26� in the form

�

�t
p�x,t� = − ���x�p�x,t� +� ���x�����x − x���p�x�,t�dx�,

�28�

i.e., as the ordinary master equation for the unique � and �,
with a new frequency ���x�=���x ,��g���d�. If we assume
that g���=0 for ��0, �� can be expressed in the form of the
Laplace transform

���s� = �
0

�

g���e−s�d� , �29�

where s=ln �x�. Therefore, the solution of the fractional equa-
tion �1� for a given ��ln��x � �� is possible by utilizing the
solution for the problem of the distributed �; it requires the
inversion of the Laplace transform �29�. The existence con-
dition restricts the applicability of the presented method to a
rather weak x dependence of the frequency. Moreover, the
original function g��� should be normalizable. The latter
condition, however, can be dropped if only large values of �x�
are interesting, that usually is the case; then we can impose
an upper cut on the integration interval.

Let us consider an example of the jumping rate ��x�
which decreases logarithmically for �x � →�:

��x� =
�

� + ln�x�
1 − e−�g�x�−g

1 − e−�g , �30�

where � ,g�0. This case can be solved exactly and directly
compared with the simulations. Inversion of the Laplace
transform yields

g��� =
�

1 − e−�ge−�� for � � �0,g� . �31�

Figure 3 presents the distribution p�x , t� which is the solution
of Eq. �27� with g��� given by Eq. �31�; the result of the
Monte Carlo trajectory simulations is also shown. The distri-
butions are compared with the case of the constant �. The tail
of the distribution for the former process lies slightly lower.
That difference stems from the fact that for the logarithmic
��x� all values of the parameter �� �0,1� are involved,
whereas the case �=const corresponds solely to �=0; posi-
tive values of � hamper the expansion of the distribution. On
the other hand, the slope is the same for both cases since it
depends only on �.

Up to now, we have considered the processes for which
the distributions w and � are coupled via the x variable. In
some physical situations, however, the trapping may influ-

FIG. 2. �Color online� The characteristic displacement ��x�� as a
function of time for the order parameter � sampled within two
different intervals and for both positive and negative values of �.
The parameter � of the function t�, which has been fitted to each
curve at large t, is indicated in the figure.
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ence the jumping mechanism and vice versa, just on the level
of individual trajectories. In the framework of the present
formalism, such a coupling requires the introduction of a
direct dependence between the parameters �=����. If we
assume that the order parameter � is a stochastic variable
distributed according to f���, the master equation for that
process reads

�

�t
p�x,t� = −� ��x,�����f���p�x,t�d� +� � ��x�,�����

����x − x���f���p�x�,t�dx�d� . �32�

The form of the function ���� must be imposed by physical
conditions which are specific to a concrete problem. Let us
consider only a simple example

���� =
1

� − �0 + d
, �33�

where �� ��0 ,2� and d�0. Such dependence means that if
the probability of a long jump is large �small ��, it will be
compensated by the increased probability of large waiting
time. The strength of that enhanced trapping is governed by
the parameter d. We wish to calculate the mean first passage
time T, i.e., the average time a trajectory needs to reach a
given distance L, regarded as an absorbing barrier. For that
purpose one needs to solve the Eq. �32� with the boundary
condition p�L , t�=0. The result of the numerical calculations
is presented in Fig. 4: T rises to infinity when d→0. For the
Lévy flights with any but unique choice of the parameters �
and �, the time T is always finite �45�.

IV. CONCLUSIONS

We have discussed the random walk process which is de-
fined by the Lévy distribution of jump size and by the Pois-

sonian waiting time distribution. The nonhomogeneity of the
medium is included in the model by allowing for the depen-
dence of the jumping rate on the process value. The process,
in the diffusion limit, is governed by the Lévy distribution
and it is characterized by a simple scaling. Our purpose was
to study the problem of multiscaling which emerge when the
parameters of the process—either the Lévy distribution order
parameter � or the jumping rate parameter �—are not unique
but regarded as random variables with given probability den-
sity distributions. We have derived the master equations and
the corresponding fractional equations. The solution of the
latter ones can be expressed as a combination of the Fox
functions—each of them corresponds to a single Lévy pro-
cess with a simple scaling.

We have restricted our considerations mainly to the jump-
ing rate in the scaling form ��x�= �x�−�. However, the process
with the distributed parameter � appears to be equivalent to
the case of a process with a more general form of ��x�; if the
inverted Laplace transform of the function ��ln��x � �� exists,
which is the case for a rather slow decrease of the jumping
rate with �x�, the solution of the corresponding fractional
equation can then be achieved and it has the form of a linear
combination of the Fox functions.

All the processes in which the jumping size obeys the
Lévy distribution, both for the unique and distributed model
parameters, are expected to possess the divergent second mo-
ment. Then the diffusion must be accelerated and the first
passage time must be finite. In particular, the � dependence
of the tail of p�x , t� for the case of the distributed � is not
sensitive on g���; it coincides with that for the Lévy process
which corresponds to a unique �. However, the transport can
be slowed down considerably if one allows for an explicit
dependence between the parameters � and �, i.e., between
temporal and spatial ingredients of the trajectory evolution.
We have demonstrated that if penalizing long jumps by large
values of � is sufficiently strong, the mean first passage time
becomes infinite.

FIG. 3. �Color online� Lower curves: the distribution p�x , t� ob-
tained from trajectory simulations for the jumping rate �30� with
parameters �=1 and g=1 �dashed line� and as the solution of Eq.
�27�, expanded at both small and large �x� �solid lines�. Upper
curves: the same but for the case �=1. For the both processes t
=5 and �=1.5.

FIG. 4. Mean first passage time for the process defined by Eq.
�32� for ���� given by Eq. �33�. The absorbing barrier is positioned
at L=50, �0=1.5.
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